2 research outputs found

    Effects of UV Exposure on the Thermo-Mechanical Properties of Cactus Based Biopolymers

    Get PDF
    The viability of renewable biopolymers as sustainable alternatives to synthetic plastics is promising, however ultra-violet (UV) radiation can lead to premature degradation and reduction in the material’s performance. Biopolymers comprised of nopal cactus juice, animal protein, natural wax, and glycerin in differing percentages were studied to obtain thermo-mechanical data in relation to UV exposure. To quantify degradation, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, goniometry and gravimetric measurements were performed. Each formulation experienced mass loss as a result of UV exposure, which could be attributed to water evaporation. The thermogravimetric analysis indicated a reduction in the second onset of degradation for each formulation, but insufficient data prevented validation of conclusive theories. The mechanical testing illustrated minor changes in relation to UV exposure, and indicated that the formulation without glycerin has a significantly higher modulus of elasticity in comparison to the other formulations. The minimal changes observed during the thermo-mechanical analysis did not suggest a decrease in material performance for each formulation up to four weeks of accelerated UV exposure. It is recommended that the UV exposure time be increased, mass measurements be taken during the first few days of exposure, and a more consistent method of sample production be developed

    Physical and digital architecture for collection and analysis of imparted accelerations on Zip Line attractions

    Get PDF
    The accelerations experienced by riders of Zip Line attractions is an underexplored area of public safety assurance. These amusement devices require complex processes to collect and analyze acceleration data. Highly versatile and effective rider-worn and ride-carried devices are necessary to collect acceleration and velocity data without affecting the integrity of the ride. This paper introduces the use of a sensor device for collecting Zip Line acceleration data in the form of a Trailing Trolley. This architecture extends the work of Sicat et. al.’s which proposed the use of a Sensor Vest and Headwear to collect linear and rotational accelerations of a Zip Line rider. We investigate the logistics of combining the two sensor platforms and formulate a procedure to post-process and analyze the data. Techniques to extract, filter, and process the accelerations recorded is discussed and the potential for the synthesis of positioning linear and rotational data is described. Additional testing of data collection and analysis is necessary to prove the viability of these techniques and apparatuses as potential parts of a standardized test method for measuring rider experienced g-forces on Zip Lines
    corecore